Transient membrane recruitment of IRAK-1 in response to LPS and IL-1beta requires TNF R1.

نویسندگان

  • Angelia Lockett
  • Mark G Goebl
  • Maureen A Harrington
چکیده

The transcription factor NF-kappaB is an essential regulator of the innate immune response that functions as the first line of defense against infections. Activation of the innate immune response by bacterial lipopolysaccharide (LPS) triggers production of tumor necrosis factor-alpha (TNF-alpha) followed by interleukin-1 (IL-1). The IL-1 receptor associated kinase-1 (IRAK-1) is an integral component of the LPS, TNF-alpha, and IL-1 signaling pathways that regulate NF-kappaB. Thus we hypothesized that IRAK-1 coordinates cellular NF-kappaB responses to LPS, TNF-alpha, and IL-1. In contrast to TNF-alpha where IRAK-1 subcellular localization does not change, treatment with LPS or IL-1 leads to a loss in cytoplasmic IRAK-1 with a coordinate increase in plasma membrane associated modified IRAK-1. In fibroblasts lacking the type 1 TNF-alpha receptor (TNF R1), IRAK-1 turnover is altered and modification of IRAK-1 in the plasma membrane is decreased in response to LPS and IL-1, respectively. When NF-kappaB controlled gene expression is measured, fibroblasts lacking TNF R1 are hyperresponsive to LPS, whereas a more variable response to IL-1 is seen. Further analysis of the LPS response revealed that plasma membrane-associated IRAK-1 is found in Toll 4, IL-1, and TNF R1-containing complexes. The data presented herein suggest a model whereby the TNF R1-IRAK-1 interaction integrates the cellular response to LPS, TNF-alpha, and IL-1, culminating in a cell poised to activate TNF-alpha-dependent NF-kappaB controlled gene expression. In the absence of TNF R1-dependent events, exposure to LPS or IL-1 leads to hyperactivation of the inflammatory response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase.

Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R ant...

متن کامل

IL-1 receptor-associated kinase modulates host responsiveness to endotoxin.

Endotoxin triggers many of the inflammatory, hemodynamic, and hematological derangements of Gram-negative septic shock. Recent genetic studies in mice have identified the Toll-like receptor 4 as the transmembrane endotoxin signal transducer. The IL-1 intracellular signaling pathway has been implicated in Toll-like receptor signal transduction. LPS-induced activation of the IL-1 receptor-associa...

متن کامل

Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model.

Recent in vitro and murine in vivo studies have identified several potential LPS tolerance factors. In this study, we describe the expression kinetics of these LPS tolerance factors in standardized human endotoxemia models using i.v. LPS bolus administration. Responsiveness to LPS as well as the expression of potential regulators of LPS signaling were determined in peripheral whole blood. Intra...

متن کامل

Lipopolysaccharide enhances substance P-mediated neutrophil adherence to epithelial cells and cytokine release.

Lipopolysaccharide (LPS) is implicated in many respiratory tract inflammatory diseases. Tachykinins, especially substance P (SP) through the NK-1 receptor, mediate leukocyte adhesion to the endothelial or airway epithelial cells. Here we assessed the enhancement by LPS of tachykinin-mediated neutrophil adherence to alveolar epithelial cells, and associated interleukin-1 beta (IL-1beta) and tumo...

متن کامل

Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice.

In this study, the effect of Lactobacillus plantarum lipoteichoic acid (pLTA) on LPS-induced MAPK activation, NF-kappaB activation, and the expression of TNF-alpha and IL-1R-associated kinase M (IRAK-M) was examined. The expression of the pattern recognition receptor and the survival rate of mice were also examined. pLTA pretreatment inhibited the phosphorylation of ERK, JNK, and p38 kinase. It...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 295 2  شماره 

صفحات  -

تاریخ انتشار 2008